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Abstract The existence of a dynamo effect in a simplified magnetohydrodynamic model of
turbulence is considered when the magnetic Prandtl number approaches zero or infinity. The
magnetic field is interacting with an incompressible Kraichnan-Kazantsev model velocity
field which incorporates also a viscous cutoff scale. An approximate system of equations in
the different scaling ranges can be formulated and solved, so that the solution tends to the
exact one when the viscous and magnetic-diffusive cutoffs approach zero. In this approxima-
tion we are able to determine analytically the conditions for the existence of a dynamo effect
and give an estimate of the dynamo growth rate. Among other things we show that in the
large magnetic Prandtl number case the dynamo effect is always present. Our analytical es-
timates are in good agreement with previous numerical studies of the Kraichnan-Kazantsev
dynamo by Vincenzi (J. Stat. Phys. 106:1073–1091, 2002).

Keywords Dynamo · Magnetohydrodynamic · Turbulence · Kraichnan-Kazantsev

1 Introduction

The study of the dynamo effect in short time correlated velocity fields was initiated by
Kazantsev in [15], where he derived a Schrödinger equation for the pair correlation func-
tion of the magnetic field. However, that equation was still quite difficult to analyze except
in some special cases. The large magnetic Prandtl number Batchelor regime was studied
by Chertkov et al. [5], with methods of Lagrangian path analysis of [4, 21]. However this
approach is valid only for limited time (until the finiteness of the velocity field’s viscous
scale becomes relevant) even for infinitesimal magnetic fields. For the problem involving
the full inertial range of the advecting velocity field, Vergassola [22] has obtained the zero
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mode exponents in the inertial range (and hence a criterion for presence of the dynamo).
Vincenzi [23] obtained numerically (in three dimensional space) the dynamo growth rate at
finite magnetic Reynolds and Prandtl numbers. However, until now, an analytical method to
obtain the dynamo growth rate was lacking.

Our objective in this paper is to exhibit such a method, derived from the work in [11].
This allows us to better understand the dynamo effect. Last but not least we obtain good
approximations to the numerical computation results of Vincenzi.

1.1 From Full MHD to the Kraichnan-Kazantsev Model

Magnetohydrodynamics (MHD) is usually described by the Navier-Stokes equations for a
conducting fluid coupled to the magnetic field in the following way:

∂tv + (v · ∇)v − 1

μf ρf

(B · ∇)B + 1

2μf ρf

∇(|B|2) + 1

ρf

∇p = νf �v + F , (1.1)

∂tB + (v · ∇)B − (B · ∇)v = 1

μf σf

�B, (1.2)

∇ · v = 0, (1.3)

∇ · B,= 0, (1.4)

where v and B are the fluid velocity and magnetic (induction) fields respectively, ρf is the
density of the fluid, μf is its magnetic permeability, σ

f
its conductivity and νf its viscosity,

p is the pressure and F may be some externally imposed volume force acting on the fluid.
These equations already take into account the so called MHD approximation, whereby the
fluid is supposed to be locally charge neutral everywhere, the displacement current is sup-
posed negligible.

In the current paper we will be interested by the growth of an initial seed magnetic field,
so we can suppose B to be infinitesimal above. Hence the terms involving B in (1.1) may
be neglected (all the more so that they are quadratic). This turns the problem into a passive
advection one for the magnetic field (i.e. the magnetic field doesn’t influence the evolution of
the velocity field), while the velocity field evolves according to the Navier-Stokes equations
with some external forcing (independent of the magnetic field).

Since in the passive advection case the velocity field evolves autonomously, one can
define for it as usual the Reynolds number Re = LvV/νf , where Lv is the integral scale
(scale of largest wavelength excited mode) of the velocity field and V is the typical velocity
magnitude at these scales. One can also define a magnetic Reynolds number as ReM =
V Lv/κ , where κ = 1/(μf σ

f
) is the magnetic diffusivity. Note that Lv is the integral scale

of the velocity field and V is the velocity at such a scale. We will be mostly working in the
case where both Reynolds numbers are very large, more specifically in the case when Lv is
sent to infinity.

To give an intuitive idea of the dynamo effect, note that, for low values of the magnetic
diffusivity (low in the sense that the magnetic Reynolds number based on it is high), the
magnetic field lines are approximately frozen into the fluid and they are typically stretched
by the flow, due to the term B · ∇v appearing in (1.2). This process may lead to an expo-
nential growth in time of the magnetic field. If there is such a growth then we talk about
turbulent dynamo. If the seed magnetic field is unable to grow, and instead it decays, then
we say that there is no dynamo. We point out that this definition is based merely on a linear
stability analysis, and does not exclude the possibility of persistent magnetic fields starting
from a finite size perturbation, even if the system doesn’t show dynamo effect for infinitesi-
mal magnetic fields (reminiscent of the case of hydrodynamic turbulence in a pipe flow).
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In addition, we wish to study the situation where the velocity field is turbulent, or in
other terms the Reynolds number Re is high. Then, using real solutions of the Navier-Stokes
equations is only possible for numerical computations.

To deal analyitically with the passive advection problem, a typical way is to resort to
some statistical model of the velocity field. We choose here to use the Kraichnan-Kazantsev
model [15, 16], because it readily yields to analytical treatment of passive advection [9] and
is well understood (see e.g. [3, 8] for a general review, or [1, 12, 22, 23] dealing specifically
with the passive turbulent dynamo).

Our problem is now reduced to studying the evolution of B described by

∂tB + v · ∇B − B · ∇v = κ�B, (1.5)

∇ · B = 0, (1.6)

where v is given according to the Kraichnan-Kasantsev model presented below. We will
derive an equation for the pair correlation function

〈
Bi(t, r)Bj (t, r

′)
〉

(1.7)

averaged over the velocity statistics, and attempt to solve it using a certain approximation
scheme, which will be explained at the end of this introduction.

The possible unbounded growth—as we shall see—of the magnetic field’s pair correla-
tion function, depending on the roughness parameter ξ (to be defined below) of the velocity
field and the magnetic Prandtl number, is in contrast with the passive scalar case, where in
the absence of external forcing the dynamics was always dissipative [10, 14, 18].

1.2 Definition of Kraichnan Model

The Kraichnan model is defined as a Gaussian, mean zero, random velocity field, with pair
correlation function

〈
vi(t, r)vj (t

′, r ′)
〉 = δ(t − t ′)D0

∫
d−k

eik·(r−r ′)

|k|d+ξ
f (lν |k|)Pij (k)

=: δ(t − t ′)Dij (r − r ′; lν), (1.8)

with d−k := ddk

(2π)d
and

Pij (k) = δij − kikj

k2
(1.9)

to guarantee incompressibility. It is evident that Dij is homogenous and isotropic. We briefly
discuss below the meanings of ξ , lν and f .

The parameter ξ , such that 0 ≤ ξ ≤ 2, describes the roughness of the velocity field.
The choice of ξ = 4/3 would correspond to the Kolmogorov scaling of equal-time velocity
structure functions. However there is no evident prescription for ξ that would best reproduce
a real turbulent velocity field, and even for the case under study of passive advection of a
magnetic field, it is not clear what ξ should be considered.

The function f is an ultraviolet cutoff, which simulates the effects of viscosity. It decays
faster than exponentially at large k, while f (0) = 1 and f ′(0) = 0. For example we could
choose f (lνk) = exp (−l2

ν k
2), although the explicit form of the function is not needed below.
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In the usual case without the cutoff function f the velocity correlation function behaves as
a constant plus a term ∝ rξ , but in this case we have an additional scaling range for r � lν
where it scales as ∝ r2. The length scale lν can be used to define a viscosity ν or alternatively
one can use κ to define a length scale lκ . We can then define the Prandtl number1 measuring
the relative effects of viscosity and diffusivity as P = ν/κ . Note that the integral scale was
assumed to be infinite, i.e. there is no IR cutoff.

1.3 Plan of the Paper

The goal of the present paper is to extend previous considerations by introducing a set of
approximate equations, which admit an exact analytical solution. The analysis proceeds
along the same lines as in a previous paper for a different problem by one of us [11]. The
problem in the analysis can be traced to existence of length scales dividing the equation in
different scaling ranges. In our case there are two such length scales, one arising from the
diffusivity κ and the other from the UV cutoff in the velocity correlation function. As will be
seen in Appendix 1, what one actually needs in the analysis is the velocity structure function
defined as

1

2

〈
(vi(t, r) − vi(t, r

′))(vj (t
′, r) − vj (t

′, r ′))
〉

= δ(t − t ′)D0

∫
d−k

1 − eik·(r−r ′)

|k|d+ξ
f (lν |k|)Pij (k)

=: δ(t − t ′)dij (r − r ′; lν). (1.10)

This is all one needs to derive a partial differential equation for the pair correlation function
of B , but it will still be very difficult to analyze. Hence the approximation, which proceeds
as follows:

(1) Consider the asymptotic cases where r is far from the length scales lκ and lν with the
separation of the length scales large as well. There are therefore three ranges where the
equation is simplified into a much more manageable form. The equations are of the form
∂tH − MH = 0, where M is a second order differential operator with respect to the
radial variable. We then consider the eigenvalue problem MH = zH .

(2) By a suitable choice of constant parameters in terms of the length scales, we can adjust
the differential equations to match in different regions as closely as possible. Solving
the equations, we obtain two independent solutions in all ranges.

(3) We match the solutions by requiring continuity and differentiability at the scales lν and
lκ . Also appropriate boundary conditions are applied.

(4) According to standard physical lore, the form of cutoffs do not affect the results when
the cutoffs are removed. In addition to lν , we can interpret lκ as a cutoff. Therefore we
conjecture that the solution approaches the exact one for small cutoffs. We also expect
the qualitative results, such as the existence of the dynamo effect, to apply for finite
cutoffs as well.

For concreteness, suppose that M is of the form

M = a(lν, lκ , r)∂
2
r + b(lν, lκ , r)∂r + c(lν, lκ , r). (1.11)

1We choose to write the Prandtl number as P instead of the usual Pr since it appears so frequently in
formulae.
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Fig. 1 A sketch of the procedure of approximating the example equation. The dashed vertical lines corre-
spond to either one of the length scales lν and lκ with pictures (a), a plot of the “real” coefficient, which
depends of the cutoff function (and is really unknown), (b) an approximate form obtained by taking r far
from the length scales (dotted parts of the lines are dropped), (c) the approximations extended to cover all
r ∈ R, and (d) adjusting the coefficients to match at the scales lν and lκ . For r much larger than the cutoffs,
the error due to the approximation is lost

The coefficients are some functions of the length scales lν and lκ and the radial variable r .
In general, solving the eigenvalue problem for such a differential equation is not possible
except numerically. However, we can approximate the coefficients in the asymptotic regions
when r is far from the length scales. The asymptotic coefficients are all power laws and
solving the equations becomes much easier. Figure 1 illustrates this procedure corresponding
to steps (1) and (2) for any of the coefficients.

After some preparations, we begin by writing down the equation for the pair correlation
function of the magnetic field using the Itô formula. The derivation can be found in Appen-
dix 1. The equation is of third order in the radial variable, but it can be manipulated into
a second order equation by using the incompressibility condition. In Sect. 2 the approxi-
mate equations will be derived when ν � κ and κ � ν, or Prandtl number small or large,
respectively. We use adimensional variables for sake of convenience and clarity. The focus
of the paper is mainly on the existence of the dynamo effect and its growth rate. Therefore
we consider the spectrum of M. By a spectral mapping theorem, we relate the spectra of M
and the corresponding semigroup etM. It is then evident that if the spectrum of M contains
a positive part, there is exponential growth, i.e. a dynamo effect.

1.4 Structure Function Asymptotics

Due to the viscous scale lν in the structure function (1.10), there are two extreme scaling
ranges r � lν (inertial range) and r � lν . For r � lν we can set lν = 0 in (1.10) and obtain

d>
ij (r) := D1r

ξ
(
(d + ξ − 1)δij − ξ

rirj

r2

)
, (1.12)

where

D1 = D0C∞
(d − 1)(d + 2)

, C∞ = �(1 − ξ/2)

2d+ξ−2πd/2�(d/2 + ξ/2)
. (1.13)

The second case corresponds to the viscous range, which is to leading order in r :

d<
ij (r) := D2l

ξ−2
ν r2

(
(d + 1)δij − 2

rirj

r2

)
, (1.14)
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where

D2 = D0C0

(d − 1)(d + 2)
, C0 =

∫
d−k

f (k)

kd+ξ−2
. (1.15)

We see that the viscous range form (1.14) can be obtained from (1.12) by a replacement
ξ → 2 and D1 → D2l

ξ−2
ν . Note that by adjusting the cutoff function f we can also ad-

just D2/D1.

1.5 Incompressibility Condition

Due to rotation and translation invariance, the equal-time correlation function of B must be
of the form

Gij (t, |x − x ′|) := 〈Bi(t,x)Bj (t,x
′)〉 = G1(t, r)δij + G2(t, r)

rirj

r2
, (1.16)

where r = |x − x ′|. Additional simplification arises from the incompressibility condition
∂iGij (t, r) = 0:

∂rG1(t, r) = − 1

rd−1
∂r(r

d−1G2(t, r)). (1.17)

The general solution of the incompressibility condition can be written as

{
G1(t, r) = r∂rH(t, r) + (d − 1)H(t, r),

G2(t, r) = −r∂rH(t, r).
(1.18)

In terms of a so far arbitrary function H . Alternatively, adding the above equations we may
write

H(t, r) = 1

d − 1
(G1(t, r) + G2(t, r)) . (1.19)

This observation leads to a considerable simplification in the differential equation for the
correlation function: whereas the equations for G1 and G2 are of third order in r , we can
use the above result to obtain a second order equation for H . Then we would get back to G

through (1.18); for example we have for the trace of G:

Gii(t, r) = (d − 1) (r∂rH(t, r) + dH(t, r)) , (1.20)

although we refrain from doing this since H has the same spectral properties as Gii .

2 Equations of Motion

The equation of motion for the pair correlation function is derived in Appendix 1:

∂tGij = 2κ�Gij + dαβGij,αβ − dαj,βGiβ,α − diβ,αGαj,β + dij,αβGαβ. (2.1)

The indices after commas are used to denote partial derivatives and we use the Einstein
summation. For derivatives with respect to the radial variable r we will simply denote ∂r . We
will also try to avoid writing any arguments, unless it may cause confusion. By taking r � lν
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and r � lν we can use the approximations (1.12) and (1.14) to write the equation in the
corresponding ranges. This is done for the quantity H = (G1 + G2)/(d − 1) in Appendix 1
as well, resulting in the equations

∂tH = ξ(d − 1)(d + ξ)D1r
ξ−2H + [

2(d + 1)κ + (d2 − 1 + 2ξ)D1r
ξ
] 1

r
∂rH

+ [
2κ + (d − 1)D1r

ξ
]
∂2

r H, r � lν, (2.2)

and

∂tH = 2(d − 1)(d + 2)D2l
ξ−2
ν H + [

2(d + 1)κ + (d2 + 3)D2l
ξ−2
ν r2

] 1

r
∂rH

+ [
2κ + (d − 1)D2l

ξ−2
ν r2

]
∂2

r H, r � lν . (2.3)

Simple dimensional analysis leads to the observation

[κ] = [D1r
ξ ] = [D2l

ξ−2
ν r2], (2.4)

where the brackets denote the scaling dimension of the quantities. We define the length
scale lκ as the scale below which the diffusive effects of κ become important. This will
be done explicitly below for different Prandtl number cases. In general, one can write
κ = D1l

ξ−p
ν lpκ for some p ∈ (0,2]. Now one just needs to identify the dominant terms in

the three scales divided by lν and lκ . For sake of clarity, we choose to write these equa-
tions in adimensional variables. This can be done for example by defining r = lρ and
t = l2−ξ τ/D1 with l being a length scale. It turns out to be convenient to choose the larger
of lκ and lν as l. Since we deal with a stochastic velocity field with no intrinsic dynam-
ics, we cannot, in principle, talk about viscosity. However, it is convenient to define a
viscosity ν (of dimension length squared divided by time) by dimensional analysis from
the length scale lν and the dimensional velocity magnitude D1, giving a relationship be-
tween ν, lν and D1 similar to what we would get in a dynamical model. We therefore de-
fine

ν := D1l
ξ
ν . (2.5)

This permits us to define the Prandtl number in the standard manner as P = ν/κ . We then
consider the cases P � 1 and P � 1.

2.1 Small Prandtl Number

Now ν � κ , and we choose as adimensional variables
{

r = lκρ,

t = l
2−ξ
κ

D1
τ.

(2.6)

Note that the relation between lκ and κ has not yet been determined. In these variables, (2.2)
and (2.3) become

∂τH = ξ(d − 1)(d + ξ)ρ−2+ξH +
[

2(d + 1)
κ

D1l
ξ
κ

+ (d2 − 1 + 2ξ)ρξ

]
1

ρ
∂ρH

+
[

2
κ

D1l
ξ
κ

+ (d − 1)ρξ

]
∂2

ρH, ρ � lν/ lκ (2.7)
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Fig. 2 Sketch of the scaling
ranges at small Prandtl number

and

∂τH = 2(d − 1)(d + 2)
D2

D1

(
lν

lκ

)ξ−2

H

+
[

2(d + 1)
κ

D1l
ξ
κ

+ (d2 + 3)
D2

D1

(
lν

lκ

)ξ−2

ρ2

]
1

ρ
∂ρH

+
[

2
κ

D1l
ξ
κ

+ (d − 1)
D2

D1

(
lν

lκ

)ξ−2

ρ2

]

∂2
ρH, ρ � lν/ lκ . (2.8)

As mentioned above, we also consider r � lκ and r � lκ , that is ρ � 1 and ρ � 1, re-
spectively. There are now three regions in ρ, divided by lν/ lκ and 1, with lν/ lκ � 1. The
regions, solutions and various other quantities will be labelled by S, M and L, correspond-
ing to ρ � lν/ lκ , lν/ lκ � ρ � 1 and 1 � ρ. See Fig. 2 for quick reference. Therefore the
short range equation will be derived from (2.8) and the two others from (2.7). Consider for
example explicitly the coefficients of ∂2

ρH :

L : 2
κ

D1l
ξ
κ

+ (d − 1)ρξ ,

M : 2
κ

D1l
ξ
κ

+ (d − 1)ρξ ,

S : 2
κ

D1l
ξ
κ

+ (d − 1)
D2

D1

(
lν

lκ

)ξ−2

ρ2.

(2.9)

By definition of the length scale lκ , in the region L the diffusivity is negligible and in the
region M it is dominant, as it is in the region S since in there ρ approaches zero. The
coefficients are then approximately

L : (d − 1)ρξ ,

M : 2
κ

D1l
ξ
κ

,

S : 2
κ

D1l
ξ
κ

.

(2.10)

Matching the coefficients of L, M at ρ = 1 provides us with a condition (matching between
S and M gives nothing new)

d − 1 = 2
κ

D1l
ξ
κ

. (2.11)

This is used as a definition of κ as κ = 1
2 (d −1)D1l

ξ
κ . Writing down the short range equation

with the above approximations,

∂τHS = 2(d − 1)(d + 2)
D2

D1

(
lν

lκ

)ξ−2

HS + (d2 − 1)
1

ρ
∂ρHS + (d − 1)∂2

ρHS, (2.12)
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by using the derived expression for the Prandtl number,

P = ν

κ
= 2

d − 1

(
lν

lκ

)ξ

, (2.13)

and by defining

D2

D1
=

(
2

d − 1

)1−2/ξ

(2.14)

(remember that D2 could be adjusted by a choice of the cutoff function f , see (1.14) and
below) a more neat expression is obtained for the short range equation. We can now write
down all the equations:

∂τHS = 2(d − 1)(d + 2)P 1−2/ξHS + (d2 − 1)
1

ρ
∂ρHS + (d − 1)∂2

ρHS, (2.15a)

∂τHM = ξ(d − 1)(d + ξ)ρ−2+ξHM + (d2 − 1)
1

ρ
∂ρHM + (d − 1)∂2

ρHM, (2.15b)

∂τHL = ξ(d − 1)(d + ξ)ρ−2+ξHL + (d2 − 1 + 2ξ)ρξ−1∂ρHL + (d − 1)ρξ ∂2
ρHL. (2.15c)

2.2 Large Prandtl Number

Now ν � κ , and we choose
{

r = lνρ,

t = l
2−ξ
ν

D1
τ.

(2.16)

Then (2.2) and (2.3) for r � lν and r � lν become in the new variables

∂τH = ξ(d − 1)(d + ξ)ρ−2+ξH +
[

2(d + 1)
κ

D1l
ξ
ν

+ (d2 − 1 + 2ξ)ρξ

]
1

ρ
∂ρH

+
[

2
κ

D1l
ξ
ν

+ (d − 1)ρξ

]
∂2

ρH, ρ � 1 (2.17)

and

∂τH = 2(d − 1)(d + 2)
D2

D1
H +

[
2(d + 1)

κ

D1l
ξ
ν

+ (d2 + 3)
D2

D1
ρ2

]
1

ρ
∂ρH

+
[

2
κ

D1l
ξ
ν

+ (d − 1)
D2

D1
ρ2

]
∂2

ρH, ρ � 1. (2.18)

The ranges S, M and L now correspond to ρ � lκ/ lν , lκ/ lν � ρ � 1 and 1 � ρ, see Fig. 3.
Note that equations in both S and M are now derived from (2.18). As before, we consider
again the coefficients of ∂2

ρH and drop the terms ∝ κ in L and ∝ ρ2 in S. The diffusive
effects are not dominant in the region M since r � lκ , so we drop the ∝ κ term in M too.
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Fig. 3 Sketch of the scaling
ranges at large Prandtl number

The approximative coefficients are then

L : (d − 1)ρξ ,

M : (d − 1)
D2

D1
ρ2,

S : 2
κ

D1l
ξ
ν

.

(2.19)

We then obtain two equations by matching the coefficient of L with M at ρ = 1 and of M

with S at lκ/ lν :

D2

D1
(d − 1) = (d − 1),

(d − 1)
D2

D1

(
lκ

lν

)2

= 2
κ

D1l
ξ
ν

, (2.20)

with solutions

D2 = D1,

κ = d − 1

2
D1l

2
κ l

ξ−2
ν . (2.21)

The Prandtl number is in this case

P = 2

d − 1

(
lν

lκ

)2

. (2.22)

Note that one can obtain this from the small Prandtl number equation (2.13) by replacing
ξ → 2. This is a reflection of a more subtle observation that the large Prandtl number case
for any ξ is similar to the small Prandtl number case with ξ = 2. We collect the equations
using the above approximations,

∂τHS = 2(d − 1)(d + 2)HS + 2
d + 1

P

1

ρ
∂ρHS + 2

P
∂2

ρHS, (2.23a)

∂τHM = 2(d − 1)(d + 2)HM + (d2 + 3)ρ∂ρHM + (d − 1)ρ2∂2
ρHM, (2.23b)

∂τHL = ξ(d − 1)(d + ξ)ρ−2+ξHL + (d2 − 1 + 2ξ)ρξ−1∂ρHL + (d − 1)ρξ ∂2
ρHL. (2.23c)

Note that the short and long range equations are somewhat similar to the respective small
Prandtl number ones, (2.15a) and (2.15c). However, the equation in the medium range above
is scale invariant in ρ, unlike the corresponding small Prandtl number one (2.15b).

3 Resolvent

In the preceding section we have reduced the evolution of the two-point function of the
magnetic field to a parabolic partial differential equation (PDE) of the form ∂τH = MH ,
where M is an elliptic operator on the positive half-line.



J Stat Phys (2007) 129: 205–239 215

We are now concerned with finding the fastest possible long time asymptotic growth rate
of a solution H . If that maximal growth rate is positive then we say that there is dynamo
effect with that growth rate.

In mathematical terminology, the operator M is the generator of a time evolution semi-
group acting on (the space of the) H and the maximum growth rate is the maximum real
part of the spectrum of the evolution semigroup. We expose below how the spectrum of the
semigroup is related to that of its generator, and then study the spectrum of M.

3.1 General Considerations

Given a differential operator M with a domain D(M), we define the resolvent

R(z,M) := (z −M)−1 (3.1)

and the resolvent set as

�(M) := {z ∈ C|z −M : D(M) → X is bijective} . (3.2)

The complement of the resolvent set, denoted by σ(M), is the spectrum of M.
According to the well known Hille-Yosida theorems (see e.g. [7]), if (M,D(M)) is

closed and densely defined and if there exists z0 ∈ R such that for each z ∈ C with 
z > z0

we have z ∈ �(M), and additionally the resolvent estimate ‖R(z,M)‖ ≤ 1/(
z−z0) holds,
then M is the generator of a strongly continuous semigroup T (t) satisfying ‖T (t)‖ ≤ ez0t .
However the last inequality gives only an upper bound on the growth rate of the semigroup,
and this bound is not necessarily strict, so it is not possible to say exactly how fast grows the
norm of the vector which is fastest stretched under the action of the semigroup.

Therefore we shall need in our analysis the somewhat stronger property of spectral map-
ping, relating the spectrum of the generator to that of the semigroup:

σ (T (t)) = {0} ∪ etσ(M). (3.3)

This is the case in particular if M is a so called sectorial operator, meaning that its spectrum
is contained in some angular sector {z ∈ C : |arg(z − z0)| > α > π/2} and that outside this
sector the resolvent satisfies the (stronger) estimate

‖R(z,M)‖ ≤ C

|z − z0| . (3.4)

Under these hypotheses M generates an analytic semigroup, for which the spectral mapping
property (3.3) holds.

We take a moment to remind the reader that analytic semigroups are those to which
physicists are used, for example one can use for them the Cauchy integral formula:

T (t) := etM = 1

2πi

∫

C
dzeztR(z,M), (3.5)

where the contour surrounds the spectrum σ(M). However all strongly continuous semi-
groups are not analytic.

We do not prove in the present work that M is sectorial, however we refer the interested
reader to the general mathematical theory in [19] where it is explained and substantiated
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that strongly elliptic operators are, under quite general assumption, sectorial generators, on
a wide range of Banach spaces (e.g. Lp and C1 spaces to name but a few).

According to the above discussion, in order to explain the existence of the dynamo effect
and its growth rate, we only need to find the spectrum of M via the resolvent set �(M). Note
that we are interested only in the positive part of the spectrum, since we want to determine
the existence of the dynamo effect only.

3.2 The Resolvent Equations

The operator M in our case is cut up as the operators ML, MM and MS in the correspond-
ing ranges, obtained from (2.15a) and (2.23). The resolvent is found from the equation

(z −M)R(z,M)(ρ,ρ ′) = δ(ρ − ρ ′). (3.6)

Since we are primarily interested in the long range (L) behavior ρ > 1, we let ρ ′ stay in the
region L at all times. This results in three equations

⎧
⎨

⎩

(z −ML)RL(ρ,ρ ′) = δ(ρ − ρ ′),
(z −MM)RM(ρ,ρ ′) = 0,

(z −MS)RS(ρ,ρ ′) = 0,

(3.7)

where RL(ρ,ρ ′) is the expression of the resolvent for ρ ∈ L (the large scale range) and
ρ ′ ∈ R+ and similarly RM and RS are valid when ρ is in the middle and small scale ranges
respectively. We require the following boundary conditions from the resolvents: for small ρ

we are in the diffusion dominated range, so we require smooth behavior at ρ → 0. For large
ρ we eventually cross the integral scale (although we haven’t defined it explicitly) above
which the velocity field behaves like the ξ = 0 Kraichnan model, leading to diffusive behav-
ior at the largest scales for which the appropriate condition on the resolvent is exponential
decay at infinity.

3.3 Piecewise Solutions of the Resolvent Equations

Assuming ρ �= ρ ′, we solve (3.7) with the corresponding operators M.
The operator ML does not depend on the Prandtl number. So in the region L, we get

from e.g. (2.23c) (we use lowercase letters h± to denote the independent solutions)

h±
L(ρ) = ρ−d/2− ξ

d−1 Z̃±
λ (wρ1−ξ/2), (3.8)

where Z̃+
λ ≡ Iλ and Z̃−

λ ≡ Kλ are modified Bessel functions of the first and second kind
respectively, and we have introduced w related to z by

w = 2

2 − ξ

√
z

(d − 1)
and z = (d − 1)

(
2 − ξ

2
w

)2

, (3.9)

and the order parameter λ is

λ =
√

d[2(d − 1)3 − (d − 2)(2ξ + d − 1)2]
(2 − ξ)(d − 1)

. (3.10)
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Because the range S is always in the diffusive region, we require smoothness of the solution
at zero. Only one of the solutions satisfies this, so we get from (2.15a) and (2.23a)

hS,1(ρ) = ρ−d/2 Id/2

(√
z

d − 1
− 2(d + 2)P 1−2/ξρ

)
(3.11)

and

hS,2(ρ) = ρ−d/2 Id/2

(√
z

2
− (d − 1)(d + 2)

√
P ρ

)
, (3.12)

where the subindex 1 refers to P � 1 (small Prandtl number) and 2 to P � 1. We will use
this notation in other objects as well.

In the range M, when P � 1 we have the scale invariant equation in (2.23b) with power
law solutions

h±
M,2(ρ) = ρ−d/2− 2

d−1 ±ζ , (3.13)

where

ζ =
√

z − z2

d − 1
, (3.14)

with

z2 = −d − 1

4
[(2 − ξ)λ]2|ξ=2 = − d

4(d − 1)
(d3 − 10d2 + 9d + 16). (3.15)

The medium range equation for P � 1 cannot be solved exactly, but we can consider it in
two different asymptotic cases. From (2.15b) we get

(
ξ(d + ξ)ρ−2+ξ − z

d − 1

)
RM + (d + 1)

1

ρ
∂ρRM + ∂2

ρRM = 0 (3.16)

and note that since by definition of the medium range lν/ lκ � ρ � 1, implying 1 < ρ−2+ξ <

(lκ/ lν)
2−ξ (the � was replaced by <, so that things remain valid even as ξ → 2), the term

∝ ρ−2+ξ can be dropped if we assume that

|z| � (lκ/ lν)
2−ξ ≈ P

− 2−ξ
ξ . (3.17)

If on the other hand we have

|z| � 1, (3.18)

then z can be neglected in the equation.
The solution for large z is similar to the short range solutions,

h±
M,1(ρ) = ρ−d/2Z̃±

d/2

(√
z

d − 1
ρ

)
, |z| � (lκ/ lν)

2−ξ , (3.19)

where we denoted the P � 1 case by a subscript 1. For small z we have instead

h±
M,1 = ρ−d/2Z±

d/ξ (2
√

d/ξ + 1ρξ/2), |z| � 1, (3.20)
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where Z+
d/ξ ≡ Jd/ξ and Z−

d/ξ ≡ Yd/ξ are Bessel functions of the first and second kind respec-
tively. It turns out however that the explicit form of the above solutions affects only a specific
numerical multiplier and has no effect on the presence of the dynamo. Because of this we
in fact derive a lower bound for the growth rate which in view of the present approximation
provides a more reliable result.

3.4 Matching of the Solutions

Consider equations (3.7). We denote the long range regions ρ < ρ ′ and ρ > ρ ′ as L< and
L>. The boundary conditions for the resolvent demanded finiteness at ρ = 0, but in general
the resolvent must be in L2(R+). We therefore have in the region L> only the h−

L solution,
since it decays as a stretched exponential at infinity (the other one grows as a stretched
exponential). We also drop the subscripts labelling the different Prandtl number cases for
now. The full solutions are written as follows:

⎧
⎪⎪⎨

⎪⎪⎩

RS(z|ρ,ρ ′) = αhS(ρ),

RM(z|ρ,ρ ′) = C+
Mh+

M(ρ) + C−
Mh−

M(ρ),

RL<(z|ρ,ρ ′) = C+
L h+

L(ρ) + C−
L h−

L(ρ),

RL>(z|ρ,ρ ′) = βh−
L(ρ).

(3.21)

We denote the matching point between the short and medium ranges by ai , i.e.
{

a1 = lν/ lκ ,

a2 = lκ/ lν .
(3.22)

The other matching points are ρ = 1 and ρ = ρ ′ in both cases. There are six coefficients to
be determined, α,C±

M,C±
L and β , and in total six conditions, four from the continuity and

differentiability at ρ = ai and ρ = 1 and two conditions at ρ = ρ ′ around the delta function,
so all coefficients will be determined from these. They will then depend on the variables z

and ρ ′. The C1 conditions at ρ = 1 are

C+
L h+

L + C−
L h−

L(1) = C+
Mh+

M(1) + C−
Mh−

M(1) (3.23)

and

C+
L ∂h+

L(1) + C−
L ∂h−

L(1) = C+
M∂h+

M(1) + C−
M∂h−

M(1), (3.24)

where we denoted ∂h(1) = ∂ρh(ρ)|ρ=1. This can be expressed conveniently as
(

h+
L h−

L

∂h+
L ∂h−

L

)

1

(
C+

L

C−
L

)
=

(
h+

M h−
M

∂h+
M ∂h−

M

)

1

(
C+

M

C−
M

)
, (3.25)

where the matrix subindex refers to evaluation of the matrix elements at ρ = 1. Since we
have only one solution at short range, we get similarly at ai

(
h+

M h−
M

∂h+
M ∂h−

M

)

ai

(
C+

M

C−
M

)
= α

(
hS

∂hS

)

ai

, (3.26)

where again the matrix subindex indicates the point where matrix elements are to be evalu-
ated. We can solve these for C±

L ,
(

C+
L

C−
L

)
= J ′

(
∂h−

L −h−
L

−∂h+
L h+

L

)

1

(
h+

M h−
M

∂h+
M ∂h−

M

)

1

(
∂h−

M −h−
M

−∂h+
M h+

M

)

ai

(
hS

∂hS

)

ai

. (3.27)
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The numeric constant J ′ above contains the determinants of the inverted matrices and α. It
is certainly nonsingular due to the linear independence of the solutions. We have decided not
to explicitly write it down since, as we will see below, we only need the fraction C−

L /C+
L .

Now we have piecewise the resolvents

{
RL<(z|ρ,ρ ′) = C+

L (h+
L(ρ) + C−

L

C+
L

h−
L(ρ)),

RL>(z|ρ,ρ ′) = βh−
L(ρ),

(3.28)

and we still need to use the first equation of (3.7) for C+
L and β . The continuity condition is

C+
L

(
h+

L(z,ρ ′) + C−
L

C+
L

h−
L(z,ρ ′)

)
= βh−

L(z,ρ ′). (3.29)

The other condition is obtained by integrating the equation with respect to ρ over a small
interval and then shrinking the interval to zero:

C+
L

(
∂h+

L(ρ ′) + C−
L

C+
L

∂h−
L(ρ ′)

)
− β∂h−

L(ρ ′) = 1. (3.30)

These can be solved to yield

C+
L = h−

L(ρ ′)
W(h+

L,h−
L)(ρ ′)

(3.31)

and

β = C+
L h+

L(ρ ′) + C−
L h−

L(ρ ′)
C+

LW(h+
L,h−

L)(ρ ′)
, (3.32)

where W is the Wronskian, W(f, g) = fg′ − f ′g. Explicitly from (3.8),

W(h+
L,h−

L)(z, ρ ′) = (ρ ′)−d− 2ξ
d−1 W(Iλ,Kλ) = −(1 − ξ/2)(ρ ′)−d−1− 2ξ

d−1 . (3.33)

Using the above obtained expressions of C+
L , β and W in (3.28) we thus have the solutions

⎧
⎪⎨

⎪⎩

RL<(z|ρ,ρ ′) = − (ρ′)d+1+2ξ/(d−1)

1−ξ/2 (h+
L(ρ)h−

L(ρ ′) + (
C−

L

C+
L

)h−
L(ρ)h−

L(ρ ′)),

RL>(z|ρ,ρ ′) = − (ρ′)d+1+2ξ/(d−1)

1−ξ/2 (h−
L(ρ)h+

L(ρ ′) + (
C−

L

C+
L

)h−
L(ρ)h−

L(ρ ′)),
(3.34)

with C−
L /C+

L obtained from (3.27). We have calculated in Appendix 2 the asymptotic ex-
pression for C−

L /C+
L for the two Prandtl number cases P � 1 and P � 1,

C−
L

C+
L

= −∂h+
L(1) − �Lh+

L(1)

∂h−
L(1) − �Lh−

L(1)
, (3.35)

with leading order contribution to �L as

�L = ∂h±
M(1)

h±
M(1)

, (3.36)

with either the + or the − solution understood, the choice depending on the Prandtl number.
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4 Dynamo Effect

The mean field dynamo effect for the 2-point function of the magnetic field corresponds
to the case when the evolution operator M has positive (possibly generalized) eigenvalues.
Eigenvalues correspond to poles, in z, of the resolvent given in (3.34) and generalized eigen-
values to branch cuts. The z dependence is not seen explicitly in (3.34), but recall from (3.8)
that the h±

L depend on z, and we see from (3.35) and matter in Appendix 2 that there is
further dependence through C−

L /C+
L .

The h±
L (see (3.8)) depend on the square root of z, and since the Bessel functions are

analytic on the complex right half-plane, this square root dependence leads directly to a
branch cut along the negative real axis in the z dependence of the resolvent. This corresponds
to a heat equation like continuum spectrum of decaying modes, these modes don’t contribute
to the dynamo effect.

Any other possible contributions to the spectrum come from the fraction C−
L /C+

L . An
expression for the latter is given in (3.35), with �L computed in Appendix 2. Equation (3.35)
can be simplified by noting that (using (3.8) and (3.9))

∂h±
L(1) = −

(
d

2
+ ξ

d − 1

)
Z̃±

λ (w) + (1 − ξ/2)∂wZ̃±
λ (w). (4.1)

Then we can write

C−
L

C+
L

= − (1 − ξ/2)wI ′
λ(w) − [ d

2 + ξ

d−1 + �L]Iλ(w)

(1 − ξ/2)wK ′
λ(w) − [ d

2 + ξ

d−1 + �L]Kλ(w)
. (4.2)

We underline again that w depends on the square root of z, so the complex plane minus the
negative real line for z corresponds to the 
w > 0 half-plane for w. Since Bessel functions
are analytical on this half-plane, the new singularities introduced by C−

L /C+
L may come

either from singularities of �L or zeros of the denominator C+
L . Let us introduce

�̃L = 2

2 − ξ

[
d

2
+ ξ

d − 1
+ �L

]
. (4.3)

Then the condition C+
L = 0 may be written

w
K ′

λ(w)

Kλ(w)
= �̃L. (4.4)

Finally we remind the reader that z corresponds to the growth rate with respect to the re-
duced time τ rather than real time t , and the real growth rate is thus (τ/t)z, where for the
P → 0 case from (2.6) we have τ/t = D1l

ξ−2
κ and for the P → ∞ case from (2.16) we

have τ/t = D1l
ξ−2
ν .

4.1 Prandtl Number P → 0

In Appendix 3.1.2 it is shown that �L does not introduce new singularities in the small
Prandtl case, so we only need to solve in w (4.4). In particular we are interested in the
largest solution of that equation, since that will give the growth rate of the fastest growing
mode of the two-point function of the magnetic field, and that is what we call the dynamo
growth rate. In this aim we first study the large and small w asymptotics of the two sides
of (4.4) and then, based on that, we derive estimates for its largest solution.
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4.1.1 Asymptotics of �̃L

As shown in Appendix 2.1, (8.18), in the limit of vanishing Prandtl number and for large
z,—or equivalently large w,—from the medium range solutions of (3.19) we get

�L = (1 − ξ/2)w
I1+d/2 ((1 − ξ/2)w)

Id/2 ((1 − ξ/2)w)
. (4.5)

For large w we deduce from the asymptotic properties of Bessel functions [13] that �L ∼
(1 − ξ/2)w.

As shown in Appendix 2.1, (8.21), in the limit of vanishing Prandtl number and for small
z,—or equivalently small w,—from the medium range solutions of (3.20) we get

�L = −ξ
√

d/ξ + 1
Jd/ξ+1(2

√
d/ξ + 1)

Jd/ξ (2
√

d/ξ + 1)
, (4.6)

which is obviously independent of w, so it is in fact the w → 0 limit of �L, which we shall
denote by �L(0).

4.1.2 Asymptotics of wK ′
λ(w)/Kλ(w)

From the asymptotic properties of Bessel functions [13] we deduce that, when w goes to
infinity, K ′

λ(w)/Kλ(w) ∼ −w.
However, except for the above large w asymptotics, the behaviour of wK ′

λ(w)/Kλ(w) is
very different according to weather λ is real or pure imaginary. Based on its definition in
(3.10), λ is pure imaginary if

ξ > ξ ∗ := (d − 1)

(√
d − 1

2(d − 2)
− 1

2

)

(4.7)

and it is real otherwise, and indeed positive (possibly infinite) since we take ξ ≤ 2 and d ≥ 1.
We study separately the two cases below.

Pure Imaginary λ For λ pure imaginary, Kλ(w) has an infinity of positive zeros (may
be seen from its small w development), accumulating at w = 0, and wK ′

λ(w)/Kλ(w) has a
pole at each of those zeros. Importantly for us, Kλ(w) has a largest positive zero (may be
seen from its large w asymptotics), which we shall denote by w0.

Since for large w, asymptotically Kλ(w) ∼ (π/2w)1/2 exp(−w) > 0, we must have
K ′

λ(w0) > 0 (note that we can exclude Kλ(w0) = K ′
λ(w0) = 0, since the Bessel function

is the solution of a second order homogeneous differential equation). Hence the pole of
wK ′

λ(w)/Kλ(w) at w0 has a positive coefficient.

Real Positive λ Using the integral representation of the modified Bessel function of the
second kind,

Kλ(w) =
∫ ∞

0
dte−w cosh(t) cosh(λt), (4.8)

we see that when λ ∈ R and w > 0, then Kλ(w) > 0.
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Fig. 4 Plot of the critical value
ξ∗ as a function of d

On the other hand using the recurrence relation K ′
λ(w) = −Kλ−1(w) − λKλ(w)/w we

get wK ′
λ(w)/Kλ(w) = −λ − wKλ−1(w)/Kλ(w), and since Kλ(w) and Kλ−1(w) are both

positive, we deduce

w
K ′

λ(w)

Kλ(w)
≤ −λ. (4.9)

Using the power series development of Bessel functions we also get that wK ′
λ(w)/Kλ(w)

→ −λ as w → 0.

4.1.3 Presence of Dynamo at ξ > ξ ∗ and Bounds on Growth Rate

We are now going to use the above characterized asymptotic behaviours of the two side
of (4.4) to derive estimates on its largest solution. We start with the case of ξ above the
critical value ξ ∗, which is equivalent to λ being pure imaginary. Note that since ξ ≤ 2 nec-
essarily, this case is only meaningful if ξ ∗ < 2, which we shall suppose here. The plot in
Fig. 4 shows that this is the case for dmin < d < dmax, with dmin ≈ 2.1 and dmax ≈ 8.8.

Lower Bound We have shown above that for large w the l.h.s. of (4.4) behaves as −w

while the r.h.s. behaves as (1 − ξ/2)w, furthermore that the l.h.s. has a rightmost pole at
w0 > 0 and that this pole has a positive coefficient. Using continuity of the two sides we
deduce—see also Fig. 5—that (4.4) admits a solution which is larger than w0. Hence, there
is a dynamo and its growth rate is bounded from below by z(w0) (cf. (3.9) for the relation
between z and w).

One can also obtain upper bounds on the dynamo growth rate. Of course we hope to find
one of the same order of magnitude as the lower bound w0, so that we could use w0 not just
a lower bound but as a convenient estimate of the largest solution of (4.4). We show below
the existence of such an upper bound near ξ = ξ ∗ and near ξ = 2, without succeeding to do
this for intermediate values of ξ .

We still believe that w0 is not just a lower bound for the dynamo growth rate but in fact
a rather good estimate of it. To corroborate this claim, we have plotted in Fig. 6 the value
of w0 as a function of ξ for the d = 3 dimensional case, and it indeed compares well with
the numerical results for the dynamo growth rate obtained in [23]. The agreement is all the
more remarkable that the numerical results are based on the exact evolution equation for the
two-point function of the magnetic field, whereas we started our analysis by deriving the
approximating system (2.15).
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Fig. 5 Based on the asymptotic
properties of the left and right
hand sides of (4.4), when λ is
pure imaginary and Kλ(w) has a
largest zero w0, the latter has to
be a lower bound on the largest
solution of (4.4). The dashed line
depicts the right hand side of the
equation and the solid line the
left hand side

Fig. 6 In the above figure we
have plotted the lower bound w0
with the numerical results of
[23]. The middle figure shows
plots of both data with
1/ log(ε(ξ))2 on the y-axis. The
lower bound data shows linear
behavior consistent with the
asymptotics in (4.12). We note
that there seems to be a
numerical error in the data of
[23] for ξ = 1.02. In the lowest
figure we have also plotted the
numerical data in [23] near ξ = 2
for (15/2 − ε(ξ))3/2 showing
linear behavior as expected in
(4.13). The plots in other
dimensions look similar, except
that they begin from the critical
value ξ∗ > 1



224 J Stat Phys (2007) 129: 205–239

Fig. 7 Plot of �̃L(0) as a
function of ξ∗(d) with d taking
values between 3 and 8

Upper Bound First we note that, as shown in Appendix 3.1.2, �L is increasing. The small
w (equivalently, small z) asymptotics of �L is given in (4.6). It will be now convenient to
write out explicitly the dependence of �̃L on w, by employing the notation �̃L(w). The
special case �̃L(0) is taken to mean the w → 0 limit of �̃L(w), and this is coherent with the
previous use of the symbol.

Two cases are distinguished, depending on the sign of �̃L(0). If �̃L(0) ≥ 0, then we have
the upper bound w′

0, where w′
0 is the largest zero of K ′

λ. This is a good upper bound in the
sense that it is always of the same order as the lower bound w0.

In the contrary case of �̃L(0) < 0 we use ∂w(wK ′
λ(w)/Kλ(w)) < −1 from Appendix 3.2

and get the upper bound w1 = w′
0 + |�̃L(0)|. However, this upper bound is not as good as

just w′
0, because it cannot be directly compared to the lower bound w0.

The asymptotic estimates computed in Sect. 4.1.5 rely on the stronger upper bound w′
0,

at least for ξ in some neighbourhood of ξ ∗ and 2 respectively.
For ξ = ξ ∗ we have �̃L(0) > 0, as shown in Fig. 7, where �̃L comes from (4.3) and

�L(0) is taken from (4.6). By continuity, we still have �̃L(0) > 0 on some neighbourhood
of ξ ∗, and by the above w′

0 is a valid upper bound there.
The situation for the ξ → 2 asymptotics is more complicated but in Appendix 2.1.3 it is

explained why near ξ = 2 we may use the upper bound w′
0: although �̃L(0) < 0, we can

justify �̃L(w) > 0 for w corresponding to the dynamo growth rate.

4.1.4 Absence of Dynamo at ξ ≤ ξ ∗

So far we have dealt with the case when ξ ∗ < ξ ≤ 2, and we were able to show the existence
of a dynamo effect and give bounds for the dynamo growth rate. We are now going to argue
that in all other situations there is no dynamo effect. Note that the absence of dynamo for
ξ ≤ ξ ∗ (i.e. λ real) can be shown outside of our approximation scheme (2.15), as shown
in Appendix 4. Here we show that the absence of dynamo for ξ ≤ ξ ∗ holds also for the
approximate system (though much less obviously), thus further validating the scheme.

First we study the case of d ≥ 3 and distinguish two situations. For 3 ≤ d ≤ 8 the crit-
ical ξ ∗ takes values between 1 and 2, in particular for d = 3 we get ξ ∗ = 1 as expected
[15, 22, 23]. For d ≥ 9 we get ξ ∗ > 2 so necessarily ξ < ξ ∗ since ξ ≤ 2. We are going to
show below that for ξ such that

0 ≤ ξ ≤ min(ξ ∗,2), (4.10)
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Fig. 8 Plot of the bracketed part
of �̃L(0) as a function of
d̃ ∈ (3 . . .25)

we have �̃L(0) > 0, whence (recall that �̃L(w) increases with w) the r.h.s. of (4.4) is always
positive. On the other hand for the l.h.s. of (4.4) we have the estimate (4.9). Hence there can
be no solutions of (4.4), hence no dynamo.

To prove �̃L(0) > 0 as claimed above, we first write, based on (4.4), the estimate

�̃L ≥ 2ξ

2 − ξ

[
d

2ξ
+ �L

ξ

]
.

In particular for w = 0 one may use the value of �L(0) from (4.6). Using the parameter
d̃ = d/ξ , we can write then

�̃L(0) ≥ 2ξ

2 − ξ

[
d̃

2
−

√
d̃ + 1

Jd̃+1(2
√

d̃ + 1)

Jd̃ (2
√

d̃ + 1)

]

. (4.11)

From (4.10) and d ≥ 3 we have d̃ ≥ d/min(ξ ∗,2), and using additionally (4.7) we may
obtain d̃ ≥ 3. Now a plot in Fig. 8 of the term inside brackets in (4.11) and the fact that

asymptotically the bracketed term behaves as d̃/2 −
√

d̃/2 + 1 can convince us that it is

positive for d̃ ≥ 3, and hence that �̃L(0) > 0 as claimed.
For d = 2 one readily verifies that ξ ∗ = +∞, so necessarily ξ < ξ ∗ since ξ ≤ 2. We may

again use the estimate (4.9) for the l.h.s. of (4.4), however the r.h.s. is not anymore positive.
But the plot in Fig. 9 shows that �̃L(0) > −λ and we have shown that �̃L(w) grows with w.
This excludes the presence of solutions to (4.4).

We have thus found that in dimensions 3 ≤ d ≤ 8 a critical value 1 ≤ ξ ∗ < 2 exists above
which the dynamo is present and below which we don’t expect it to be present. In other
(integer) dimensions we expect no dynamo for any value of ξ .

4.1.5 Asymptotics for ξ Near ξ ∗ and 2

We now proceed to give estimates of the growth rate of the dynamo in the cases when ξ is
near the critical value ξ ∗ above which dynamo is present, and when ξ is near its maximum
possible value 2. What we need is an estimate of the largest solution w of (4.4), from which
the corresponding growth rate z is immediately deduced through (3.9). We have argued in
Sect. 4.1.3 that, as an order of magnitude estimate for the solution, we may take the largest
zero w0 of Kλ(w), at least in some regions around ξ = ξ ∗ and ξ = 2 respectively. Here we
are going to derive the asymptotic behavior of w0 for ξ near ξ ∗ and 2, and see that it predicts
correctly the behaviour of the exact dynamo growth rate obtained numerically in [23].
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Fig. 9 Plot of �̃L(0) vs. −λ,
multiplied by 2 − ξ , as functions
of ξ . Solid line represents the left
hand side (�̃L(0)) and the
dashed line is the right hand side
which at two dimensions is −2

ξ Near ξ ∗ The case ξ ↘ ξ ∗, corresponding to λ → 0 along the imaginary axis, is some-
what simpler, it can be dealt with starting from the integral representation (4.8). Since
ξ > ξ ∗, the parameter λ is imaginary and we write λ = iλ̃ with λ̃ ∈ R, hence Kiλ̃(w) =∫ ∞

0 dt exp(−w cosh(t)) cos(λ̃t). Now cos(λ̃t) is positive near t = 0 and it becomes nega-
tive for the first time only for t > π/(2λ̃). On the other hand the term exp(−w cosh(t))

is basically a double exponential and decays very fast for w cosh(t) > 1. So in order to
get for the previous integral a non-positive result, we need w0 cosh(π/(2λ̃)) ∼ 1 imply-
ing w0 ∼ exp(−π/(2λ̃)). Through (3.9) one deduces the behaviour ln z ∼ c/λ̃, and since
λ̃ ∝ (ξ − ξ ∗)1/2 near ξ ∗ (the term under the square root in (3.10) is expected to have a
simple root at ξ = ξ ∗), we finally have

ln z ∝ (ξ − ξ ∗)−1/2 (4.12)

near ξ ∗.

ξ Near 2 We now pass to the asymptotics of the case ξ → 2. Under this limit λ diverges as
(2 − ξ)−1, along the imaginary axis. The largest zero w0 of Kλ(w) is known [2, 6] to behave
asymptotically for large purely imaginary λ as w0 = |λ|(1 + 2−1/3A1|λ|−2/3 + O(|λ|−4/3))

where A1 ≈ −2.34 is the first (smallest absolute value) negative zero of the Airy function
Ai. Combining this with (3.9) and (3.10) we get

z ≈ z2 − c(2 − ξ)2/3, c = |A1|(d − 1)1/3z
2/3
2 (4.13)

valid for ξ near 2, where c > 0 is some constant of order unity and z2 was introduced
in (3.15).

4.2 Prandtl Number P → ∞

For large Prandtl number the analysis proceeds exactly as in the previous section, except
that we have a different �L. From (8.30) and (8.27) we have, using the definition of ζ

from (3.14),

�L = ζ − 2

d − 1
− d

2
. (4.14)
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There is now a branch cut originating from z2 (defined in (3.15)) extending to infin-
ity along the negative real axis. When 3 ≤ d ≤ 8, z2 is positive and the branch cut ex-
tends up to the positive value z2 along the positive real axis, i.e. the spectrum has a
continuous positive part for all ξ ∈ [0,2]. Another major difference when comparing to
the small Prandtl number case is that the spectrum is continuous also in the positive
part.

We conclude that the dynamo is present for all ξ for large Prandtl numbers.

5 Some Remarks

5.1 Connection to the Schrödinger Operator Formalism

Here we would like to make a few comments regarding the large Prandtl number case,
addressed principally to the reader familiar with the paper by Vincenzi [23] and the
Schrödinger operator formalism used therein. For the definitions of ψ , U and m we refer
the reader to that paper.

We note that same kind of piecewise analysis we have accomplished in the present work
would have been possible also if we had first passed to the Schrödinger equation formalism.
In that setup the existence of the dynamo would depend on whether the eigenvalues of
the Schrödinger operator are negative or not. It may be explained heuristically why for a
sufficiently large Prandtl number there is always a negative energy bounded state. Consider
the zero energy Schrödinger equation

ψ ′′(r) = V (r)ψ(r), (5.1)

where V (r) = m(r)U(r) is the effective potential. The potential V behaves as 2/r2 at
very short and long scales, but as −4/r2 at the medium range, where the ranges cor-
respond to the ones in this paper. The medium range solutions are sin(

√
15/2 log(r))

and cos(
√

15/2 log(r)). When the Prandtl number is increased, the medium range re-
gion is stretched, and it is clear that for sufficiently large Prandtl numbers the solu-
tions cross zero an increasing number of times (see Fig. 10). According to a well known
theorem, such a solution cannot be a ground state (see e.g. [20], pp. 90). In fact, the
number of zeros of the solution (with nonzero derivative and excluding the zero at r =
0) is the number of negative energy states, which implies the existence of unbounded
growth.

Fig. 10 Sketchy plot of the
medium range zero energy
solution sin(

√
15/2 log(r))

crossing zero, implying the
existence of a negative energy
state. The dashed lines
correspond to regions outside the
medium range. As the range
grows when increasing the
Prandtl number, more zeros will
emerge
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5.2 Finite Magnetic Reynolds Number Effects

Let us finally touch upon some questions not discussed in the text. Our method allows us in
principle, without further complications, to estimate the critical magnetic Reynolds number
(dependent on velocity roughness exponent ξ and space dimension d) at which dynamo
effect sets in, and the growth of the dynamo exponent with Reynolds number. However we
get only a logarithmic estimate whose uncertainty is at least an order of magnitude or even
two, which makes it not too useful. Notwithstanding, we would like to mention that the
estimates we would obtain this way are hardly compatible with numerical results of [23],
our thresholds being significantly lower. This issue is currently clarified with D. Vincenzi.

5.3 Exceptional Solutions

An other issue is that of the existence of “exceptional” dynamos. It seems to us that the
“typical” dynamo (note that we consider here only the infinite magnetic Reynolds number
case) corresponds to the situation when our ξ > ξ ∗, in which case there is an infinite discrete
spectrum of growing modes. However our equations do not exclude a priori the possibility
of a single growing mode at some ξ < ξ ∗. In fact, if we take for example, at a formal
level, d = 2.125 then ξ ∗ ≈ 1.82 and for ξ ′ ≤ ξ < ξ ∗ (where ξ ′ is some value of which we
only need to know here that ξ ′ < 1.77), (4.4) will have, in what we have called the small z

approximation (cf. (3.18)), a single solution w0 > 0. If we take ξ = 1.77 then w0 ≈ 0.077
and z ≈ 8.8 · 10−5 � 1 in a self-consistent manner. However it remains to be known if such
a solution is not just an artefact of our resolution method, and if not, then to see if one can
construct a model where such solutions occur for the more physical value of d = 3.

A partial answer to these concerns is given in Appendix 4, where it is shown that for
the system (2.7), (2.8), without the approximation (2.15), the absence of dynamo is quite
straightforward, independently of the value of d , and doesn’t require the finer analysis of
Sect. 4.1.4.

6 Conclusions

The mean-field dynamo problem was considered in arbitrary space dimensions. We have
shown that, to obtain the spectrum of the dynamo problem, (4.4) has to be solved for w,
from which the growth rate z can be expressed through (3.9). The quantity �L appearing
in (4.4) is given, for small magnetic Prandtl numbers, by either (4.5) or (4.6), depending
on which of the self-consistent conditions (3.17) or (3.18) is verified (note that this leaves a
gap between, with no explicit formula). For large magnetic Prandtl number we have to use
(4.14) instead.

It was observed that, in our model, the dynamo can only exist when 3 ≤ d ≤ 8. The
results for small Prandtl numbers were shown to confirm previous results [15, 23] obtained
in three dimensions. For d > 3 a critical value for ξ was found, above which the dynamo is
present, which is larger than the three dimensional critical value ξ ∗ = 1. Furthermore, in the
vanishing Prandlt number limit we have obtained the asymptotic estimates (4.12) and (4.13),
which are in good qualitative agreement with numerical simulations of [23].

For large Prandtl numbers it was shown that the dynamo exists for all ξ and that the
spectrum is continuous. We hope our work will contribute to clarifying this somewhat con-
troversial issue. The physical idea behind our explanations is that at large magnetic Prandtl
number the magnetic field can feel the smooth scales of the fluid flow (they are not “wiped



J Stat Phys (2007) 129: 205–239 229

out” by magnetic diffusivity), and correlations in the velocity field above the viscous scale lν
won’t do more harm to the dynamo than if we had a Batchelor type flow with no correlations
of velocity at scales significantly larger than lν .

Our methods were based on approximating piecewise the evolution operator of the two-
point function of the magnetic field. This approximation introduces inaccuracies and one
may ask how these influence the fine details of our reasoning, which relied on non-trivial
estimates. We think that the general picture sketched up should be valid for the exact problem
also, based on the good agreement with available numerical data from the literature. Since
for ξ = ξ ∗ and ξ = 2 one can find the fastest growing mode explicitly, it should also be
possible to do a perturbation theory around these points for the exact evolution operator, this
is however left for future work.
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Appendix 1: PDE for the 2-Point Function of B

We rewrite (1.5) as an Itô type SPDE (following the formalism of [17], Sect. 5)

dBi + dw · ∇Bi − B · ∇dwi − κ ′�Bidt = 0, (7.1)

where κ ′ = κ + D/2 with D defined as

Dij (0) = Dδij . (7.2)

The new diffusion term in κ ′ emerges by advecting the magnetic field along the particle
trajectories similarly as in the passive scalar case by using the Itô formula. It will cancel out
eventually, as it should. We can express the above equation more conveniently by defining

dbi(t,x) = −Dx
ijk(Bj (t,x)dwk(t,x)), (7.3)

where Dx
ijk = δij ∂

x
k − δik∂

x
j .2 The equation is then simply

dBi − κ ′�Bidt = dbi. (7.4)

For a function F of fields B , we have the (generalized) Itô formula,

dF(B(t, ·)) =
∫

ddx
δF

δBi(x)
[κ ′�Bidt + dbi]

+ 1

2

∫
ddxddy

δ2F

δBi(x)δBj (y)
E(dbi(t,x)dbj (t,y)). (7.5)

The advecting velocity field is a time derivative of a Brownian motion on some state space,
that is

Edwi(t,x)dwj (t,y) = dtDij (x − y), (7.6)

2This is just a rewriting of the expression ∇ × (B × v) for incompressible fields B and v.
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where Dij was defined in (1.8). This means that

Edbi(t,x)dbj (t,y) = Dx
iklD

y

jmn (Bk(t,x)Bm(t,y)Dln(x − y)) dt. (7.7)

We apply this to F = ui(t,x)uj (t,y), denote Gij (x − y) = Eui(t,x)uj (t,y) and use the
decomposition Dij (x − y) = Dδij − dij (x − y) introduced in (1.10). Noting that terms
proportional to dw disappear, we obtain the equation for the two point function:

∂tGij = 2κ�Gij +Fij , (7.8)

and

Fij = dαβGij,αβ − dαj,βGiβ,α − diβ,αGαj,β + dij,αβGαβ, (7.9)

where the indices after commas denote partial derivatives with respect to r = x − y. Note
that this depends only on κ , not κ ′, i.e. the constant part Dδij of the structure function is
absent. Using the decomposition (1.16) and the explicit form of the long distance velocity
structure function (1.12) we get from (7.8) two equations for G1 and G2,

∂tG1 = 2κ

r2
(2G2 + (d − 1)r∂rG1 + r2∂2

r G1) +A, (7.10)

and

∂tG2 = 2κ

r2
(−2dG2 + (d − 1)r∂rG2 + r2∂2

r G2) + B. (7.11)

The symbols A and B are the terms arising from the interaction with the (long distance)
velocity fields. Using the relations (1.18) for G1 and G2 in terms of H , their explicit form
is as follows:

A
D1r−2+ξ

= ξ(d − 1)(d − 3 + ξ)H

+ (2 − d − 2d2 + d3 + (−5 + d + 2d2)ξ + (1 + d)ξ 2)r∂rH

+ (2d(d − 1) + (d + 1)ξ))r2∂2
r H + (d − 1)r3∂3

r H, (7.12)

− B
D1r−2+ξ

= −ξ(d − 1)(2 − ξ)H + ((1 − d2) + (d − 5 + 2d2)ξ + 4ξ 2 − ξ 3)r∂rH

+ (d + 1)(d − 1 + ξ)r2∂2
r H + (d − 1)r3∂3

r H. (7.13)

Now we can just add the equations (7.10) and (7.11), and by using G1 +G2 = (d − 1)H we
get

∂tH = ξ(d − 1)(d + ξ)D1r
−2+ξH + (2(d + 1)κ + (d2 − 1 + 2ξ)D1r

ξ )r−1∂rH

+ (2κ + (d − 1)D1r
ξ )∂2

r H. (7.14)
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Appendix 2: Computation of the Fraction C−
L /C+

L

By evaluating the matrix multiplications on the right hand side of (3.27), we can write the
fraction C−

L /C+
L as

C−
L

C+
L

= −∂h+
L(1) − �Lh+

L(1)

∂h−
L(1) − �Lh−

L(1)
, (8.1)

where (again) for the sake of conciseness we write ∂h(1) = ∂ρh(ρ)|ρ=1, and �L can be
written as the following nested expression:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�L = ∂h+
M(1) + �M∂h−

M(1)

h+
M(1) + �Mh−

M(1)
,

�M = −∂h+
M(ai) − �Sh

+
M(ai)

∂h−
M(ai) − �Sh

−
M(ai)

,

�S = ∂hS(ai)

hS(ai)
.

(8.2)

This follows from defining

(
hS

∂hS

)

ai

= hS(ai)

(
1

�S

)
(8.3)

and writing (3.27) as

(
C+

L

C−
L

)
= c

(
∂h−

L −h−
L

−∂h+
L h+

L

)

1

(
h+

M h−
M

∂h+
M ∂h−

M

)

1

(
∂h−

M −h−
M

−∂h+
M h+

M

)

ai

(
1

�S

)
, (8.4)

where hS(ai) is absorbed in the coefficient. We have defined above a constant c which gets
cancelled in the end of computations. It will be used below as well as a generic constant
that does not affect the final results. Multiplying the last matrix with the vector, we define
similarly

(
∂h−

M −h−
M

−∂h+
M h+

M

)

ai

(
1

�S

)
=

(
∂h−

M − �Sh
−
M

−∂h+
M + �Sh

+
M

)

ai

= c

(
1

�M

)
, (8.5)

that is,

�M = −∂h+
M(ai) − �Sh

+
M(ai)

∂h−
M(ai) − �Sh

−
M(ai)

. (8.6)

Doing this again for the second matrix, we obtain similarly

�L = ∂h+
M(1) + �M∂h−

M(1)

h+
M(1) + �Mh−

M(1)
(8.7)

and finally

C−
L

C+
L

= −∂h+
L(1) − �Lh+

L(1)

∂h−
L(1) − �Lh−

L(1)
. (8.8)
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We are interested in the leading order behavior of the fraction C−
L /C+

L only, so we need
to determine what happens to �M as P approaches zero or infinity. It turns out that either
�M → 0 or �M → ±∞, so to the leading order,

�L = ∂h±
M(1)

h±
M(1)

. (8.9)

2.1 P � 1

Below the suspension dots denote higher order terms in powers of P (or P −1 for large
Prandtl numbers). Recall from (3.22) and (2.13) that

a1 = lν/ lκ =
(

d − 1

2
P

)1/ξ

. (8.10)

The short range solution was

hS(ρ) = ρ−d/2 Id/2 (αρ) , (8.11)

with a temporary notation α = √
(z + 2P 1−2/ξ (2 − d − d2))/(d − 1) and note that |α| be-

haves as P 1/2−1/ξ . Using standard relations of Bessel functions [13] and using the definition
for �S in (8.2), we have

�S = ∂hS(a1)

hS(a1)
= α

I1+d/2
(
( d−1

2 P )1/ξα
)

Id/2

(
( d−1

2 P )1/ξα
) . (8.12)

Since P is small and the arguments of the Bessel functions above scale as P 1/2, we can use
the expansion

Id/2(u) = ud/2

(
2−d/2

�(1 + d/2)
+ 2−2−d/2

�(2 + d/2)
u2 +O(u4)

)
(8.13)

(and a corresponding one when the order parameter is 1 + d/2) to conclude that

�S = cP 1−1/ξ + · · · . (8.14)

At this point our analysis splits according to which approximation (3.19) or (3.20) we use for
h±

M,1, i.e. we treat separately the cases of small and large z. Finally when ξ = 2 the problem
can be treated for any z.

2.1.1 Large z Case

The medium range solutions in the large z case, (3.19), are

h±
M,1(ρ) = ρ−d/2

{
Id/2

Kd/2

(√
βρ

)
, (8.15)

with β = z/(d − 1). The leading order behavior is
⎧
⎪⎪⎨

⎪⎪⎩

h+
M(a1) = c + · · · ,

∂h+
M(a1) = cP 1/ξ + · · · ,

h−
M(a1) = cP −d/ξ + · · · ,

∂h−
M(a1) = cP −1/ξ−d/ξ + · · · .

(8.16)
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Using these on �M as given by (8.6), we see that to leading order

�M = cP d/ξ+1, (8.17)

which goes to zero. Therefore we have

�L ∼ ∂h+
M(1)

h+
M(1)

=
√

z

d − 1

I1+d/2

(√
z

d−1

)

Id/2

(√
z

d−1

) . (8.18)

Note that, notwithstanding the fractional powers appearing above, �L is a single valued
function, indeed near z = 0 it behaves as �L ≈ z/(d − 1). One also notes that in the large z

case �L is always positive, since the Bessel functions I are positive for positive parameter
and argument.

2.1.2 Small z Case

We may perform a similar analysis for the small z approximation, based on (3.20),

h±
M,1(ρ) = ρ−d/2

{
Jd/ξ

Yd/ξ

(
γρξ/2

)
, (8.19)

with γ = 2
√

d/ξ + 1. The leading order behavior is
⎧
⎪⎪⎨

⎪⎪⎩

h+
M(a1) = c + · · · ,

∂h+
M(a1) = cP 1−1/ξ + · · · ,

h−
M(a1) = cP −d/ξ + · · · ,

∂h−
M(a1) = cP −1/ξ−d/ξ + · · · .

(8.20)

Using these on �M (cf. (8.6)), we see that once again �M behaves at leading order as given
in (8.17), meaning that it goes to zero as P goes to zero. Therefore we have

�L ∼ ∂h+
M(1)

h+
M(1)

= −ξ
√

d/ξ + 1
Jd/ξ+1(2

√
d/ξ + 1)

Jd/ξ (2
√

d/ξ + 1)
. (8.21)

2.1.3 Case of ξ = 2

In the particular case of ξ = 2 the medium range solution can be explicitly calculated for
any z, and we have

h±
M,1(ρ) = ρ−d/2

{
Jd/2

Yd/2

(√
βρ

)
, (8.22)

where now β = 2(d + 2) − z/(d − 1). The approximations in (8.16) or (8.20) (for ξ = 2
those two coincide) are valid uniformly as ξ goes to 2, so when β is of order unity, the
leading order behaviour (8.17) is valid. Note that for z = z2 we indeed have β of order
unity. Now one deduces that �L = −√

βJd/2+1(
√

β)/Jd/2(
√

β), and for z = z2 one finds√
β = (d2 −d +4)/4/(d −1). One can then verify numerically that for ξ = 2 and z = z2 and

relevant values of d (between 3 and 8 inclusive) we have �̃L > 0. By continuity, positivity
carries over to values of ξ close to 2 and the corresponding dynamo growth rate z. This
permits us to use near ξ = 2 the upper bound w′

0 on the largest solution of (4.4), and obtain
the asymptotic behaviour of Sect. 4.1.5.
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2.2 P � 1

Now we have a2 = ((d − 1)P/2)−1/2. The short range solution is in this case

hS(ρ) = ρ−d/2 Id/2(
√

Pα′ρ), (8.23)

with

α′ = 1√
2

√
z + 2(2 − d − d2). (8.24)

Similarly to the P � 1 case,

�S = √
Pα′ I1+d/2(

√
2

d−1α′)

Id/2(

√
2

d−1α′)
= c

√
P + · · · . (8.25)

The medium range solutions are now power laws,

h±
M = ρ−d/2−2/(d−1)±δ, (8.26)

where

δ =
√

d(d3 − 10d2 + 9d + 16) + 4(d − 1)z

2(d − 1)
. (8.27)

Since ∂h±
M(a2) ∝ √

Ph±
M(a2),

∂h±
M(a2) − �Sh

±
M(a2) = c

√
Ph±

M(a2) + · · · , (8.28)

that is,

�M = c
h+

M(a2)

h−
M(a2)

+ · · · = c
1

P
+ · · · . (8.29)

This goes to zero as P → ∞, and we have

�L → ∂h+
M(1)

h+
M(1)

= ζ − 2

d − 1
− d

2
, (8.30)

where ζ was defined in (3.14). In fact we wouldn’t have needed to worry if the limit of �M

was infinite or zero. The difference would only be a different sign of ζ , which doesn’t affect
anything since it is the presence of the branch cut alone which determines the positive part
of the spectrum.

Appendix 3: Some Sturm-Liouville Theory

Consider the following general second order linear eigenvalue problem, where a, b, c are
positive functions and z ∈ R:

a(ρ)h′′(ρ) + b(ρ)h′(ρ) + c(ρ)h(ρ) = zh(ρ). (9.1)
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Introduce g = h′/h, then g verifies the first order non-linear (Riccati) differential equation

g′ = z − c − bg − ag2

a
. (9.2)

Note that a zero of h corresponds to a pole of g, and the pole is always such that as ρ

increases g goes to −∞ and comes back at +∞ (since if h is positive before crossing zero
then its derivative must be negative and vice versa).

3.1 Monotonicity of Solutions in z

Consider for (9.1) the initial condition h′(0) = 0 and h(0) > 0 which in particular implies
g(0) = 0. Now consider (9.1) and (9.2) for two different values of z, say z1 and z2, and
denote the corresponding solutions by h1, g1 and h2, g2 respectively. We show that if z1 > z2,
then g1(ρ) > g2(ρ) for ρ less than the first zero of h2.

This can be seen as follows. First, the assertion is true near ρ = 0 since g′
1(0) = (z1 −

c(0))/a(0) > (z2 − c(0))/a(0) = g′
2(0) while g1(0) = g2(0) = 0. Now suppose that at some

point the ordering of g1 and g2 changes, this means that the two have to cross, i.e. for
some ρ we have g1(ρ) = g2(ρ) = G. However at this point g′

1(ρ) = (z1 − c(ρ) − b(ρ)G −
a(ρ)G2)/a(ρ) > (z2 − c(ρ) − b(ρ)G − a(ρ)G2)/a(ρ) = g′

2(ρ), meaning that g1 cannot
cross g2 downwards, which is a contradiction.

Below we give a few specific applications of these results to our problem. Some of these
are used in the main text.

3.1.1 Position of First Zero of h Increases with z

From the above it also follows that the first zero of h1 is larger than the first zero of h2.
Indeed h2 has, obviously, no zero before its first zero. Thus g2 doesn’t go to −∞ before that
point, implying that g1 neither since g1 > g2. But then h1 has no zero either before the first
zero of h2.

A particularly useful application of this is to use the position of the first zero of the
solution with z = 0 as a lower bound on the first zero of any solution for z > 0.

3.1.2 At small Prandtl, �L is Non-Singular and Increases with z

We may apply the above to the case when (9.1) corresponds to the small Prandtl approx-
imation (2.15b) of MM . For P → 0 the lower (i.e. left) boundary condition for hM be-
comes h′

M(0) = 0. The case z = 0 can be explicitly solved and we get h0
M(ρ) := hz=0

M (ρ) =
ρ−d/2Jd/ξ (2

√
d/ξ + 1ρξ/2). What needs to be seen is that h0

M does not have zeros between

0 and 1, equivalent to Jd/ξ not having zeros between 0 and 2
√

d/ξ + 1. The latter follows
from the fact that jν,1 > 2

√
ν + 1 for ν ≥ 0 (where jν,1 is the first positive zero of the Bessel

function of index ν), which may be seen from the plot in Fig. 11, in conjunction with the
fact that we have jν,1 > ν [24].

In view of Appendix 3.1.1 this allows us to conclude that hM(ρ) doesn’t have zeros for
any z ≥ 0 for ρ ∈ [0,1], so �L = h′

M(1)/hM(1) is finite and grows with z for z ≥ 0.

Finally let us point out that h0
M does have zeros (for ρ > 1 though), and this is due to the

presence of the term ξ(d − 1)(d + ξ)ρξ−2hM in (2.15b). Without this term we would have
h0

M = 1, and obviously it wouldn’t have zeros. However the term in question corresponds
to the effect of the velocity field below the magnetic diffusive scale lκ . Thus it is quite
surprising that such a contribution makes it completely non self evident—or even seemingly
fortuitous—that �L is indeed always monotonously increasing and finite.
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Fig. 11 Plot of jν,1 (solid line)
and 2

√
ν + 1 (dashed line) for

ν = 0 . . .5. For ν > 5 we have
jν,1 > ν > 2

√
ν + 1 by [24]

3.1.3 Nodeless Zero Mode Implies no z > 0 Eigenfunction

Along the same lines one can prove for our case the standard lore of Sturm-Liouville theory
that if the zero mode (z = 0 solution) has no zeros, then there is no eigenfunction with z > 0.

The idea is that while the zero mode decays near infinity as a power law, any eigenfunc-
tion h1 for z > 0 has to decay exponentially, so it will be below the zero mode. On the other
hand, from (9.1) one deduces that h′′(0) grows with z, so that h1 has to be larger than the
zero mode near ρ = 0. This would imply that the two have to cross in the sense that h2

comes from above and goes below the zero mode, but at the crossing point g1 would be less
than that of the zero mode, which contradicts the above said.

3.2 Consequences for Modified Bessel Function

We wish to prove here that, for pure imaginary λ, the slope of ρK ′
λ(ρ)/Kλ(ρ) is bounded

from above by −1 for all ρ > 0.
Using notation from the previous subsections, introduce f (ρ) = ρg(ρ). Then (9.2) trans-

lates to f ′ = [(z − c)ρ + (a/ρ − b)f − (a/ρ)f 2]/a. Applied to the particular case of the
modified Bessel equation with parameter λ

ρ2h′′ + ρh′ − ρ2h = λ2h,

i.e. when a(ρ) = ρ2, b(ρ) = ρ, c(ρ) = −ρ2 and z = λ2, we obtain

f ′ = (ρ2 + λ2 − f 2)/ρ. (9.3)

Solving (9.3) for f ′ = −1 gives f 2 = s(ρ)2 where we define s(ρ) = −[(ρ + 1/2)2 +
λ2 − 1/4]1/2. Moreover when f 2 > s2 then f ′ < −1.

We now take f = ρK ′
λ(ρ)/Kλ(ρ) in the case when λ is pure imaginary. Then, for large ρ,

asymptotically f (ρ) − s(ρ) ∼ −(1 − 4λ2)/(16ρ2) < 0, the last inequality being guaranteed
by the fact that we consider the case when λ is pure imaginary and hence λ2 ≤ 0. This means
that for large ρ asymptotically f < s.

Using the fact that f is continuous, if f were to become larger than s for some finite ρ,
necessarily it would pass through f = s, but at that point we would have f ′ = −1 > s ′ (the
inequality holding for λ pure imaginary), which is a contradiction to the fact that for larger
ρ we should have f < s.

This proves that f < s ≤ 0 when s is real, and thus f 2 > s2 for all ρ ≥ 0, whence
f ′ < −1 for ρ ≥ 0.



J Stat Phys (2007) 129: 205–239 237

3.3 Real Spectrum

Though we do not consider M to be self-adjoint, its spectrum is always real, for the follow-
ing reason.

Since M is a second order differential operator we may conjugate it by a multiplication
operator (by a “function” which is known in the theory of diffusion processes as the speed
measure) to get a symmetric operator M̃, and taking into account the boundary conditions
we have (we see that for any z ∈ C \ R− the solution of M̃h = zh which verifies the bound-
ary conditions is a twice differentiable function with zero derivative at ρ = 0 and exponen-
tially decaying as ρ → ∞, so h is also in the domain of M̃†), we can use the same trick as
for self-adjoint operators: suppose M̃h = zh and write

∫
h̄M̃h = z

∫
h̄h, now take the com-

plex conjugate of both sides, and since M̃ is real and symmetric, we have
∫

h̄M̃h = z̄
∫

h̄h,
showing that z = z̄, i.e. that z is real.

Appendix 4: Exact Results for P = 0

Here we want to study more rigorously the case of P = 0. In this case we can find exactly
the zero mode of (2.7). For λ real (recall its definition from (3.10)) we show that the Appen-
dix 3.1.3 we conclude that there is no dynamo effect in this case. On the other hand for λ

pure imaginary the zero mode has an infinity of nodes.
Recalling (2.11), first we have to solve for the zero mode of the operator [ξ(d − 1) ×

(d + ξ)ρξ−2 + (d2 − 1 + 2ξ)ρξ−1∂ρ + (d − 1)ρξ ∂2
ρ ] + [(d2 − 1)ρ−1∂ρ + (d − 1)∂2

ρ ]. At

zero Prandtl number the boundary condition is to have finite limit at ρ = 0. The appropriate
solution is

(ρξ + 1)(d−3)/(d−1)
2F1(a, b; c;−ρξ ),

where 2F1 is the hypergeometric function and

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a = 2(d − 2)ξ + d(d − 1) + (2 − ξ)(d − 1)λ

2ξ(d − 1)
,

b = 2(d − 2)ξ + d(d − 1) − (2 − ξ)(d − 1)λ

2ξ(d − 1)
,

c = d + ξ

ξ
.

(10.1)

Let us start with the case of λ real. Without loss of generality, we may suppose λ >

0 (or otherwise exchange a and b, since the hypergeometric function is symmetric in
those arguments). Notice that 2(d − 2)ξ + d(d − 1) > 0 and [2(d − 2)ξ + d(d − 1)]2 −
[(2 − ξ)(d − 1)λ]2 = 2d2(d − 1)2 − 8ξ 2(d − 2) ≥ 2[d2(d − 1)2 − 16(d − 2)] > 0, implying
b > 0.

Notice also 2(d − 1)(d + ξ) − [2(d − 2)ξ + d(d − 1)] = d(d − 1) + 2ξ > 0 implying
c − b > 0.

Now write the following integral representation of the hypergeometric function:

2F1(a, b; c;x) = �(c)

�(b)�(c − b)

∫ 1

0

tb−1(1 − t)c−b−1

(1 − tx)a
dt (c > b > 0)

whence 2F1(a, b; c;x) > 0 for any x < 1 and c > b > 0.



238 J Stat Phys (2007) 129: 205–239

Since we have shown above c > b > 0 and since our x < 0, this proves that the zero
mode has no zeros, and hence there cannot be a dynamo effect.

For λ pure imaginary it is possible to make a large ρ development using the so called
linear transformation formula

2F1(a, b; c;−x) = �(c)�(b − a)

�(b)�(c − a)
x−a

2F1(a,1 − c + a;1 − b + a;−1/x)

+ �(c)�(a − b)

�(a)�(c − b)
x−b

2F1(b,1 − c + b;1 − a + b;−1/x). (10.2)

Since a and b are complex conjugates in the case of pure imaginary λ, the large x asymp-
totics can be written as 2F1(a, b; c;−x) ∼ 
( �(c)�(b−a)

�(b)�(c−a)
x−a), which has an infinity of zeros

since a has an imaginary part.
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